Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation
نویسندگان
چکیده
This study presents an image segmentation system that automatically segments and labels T1-weighted brain magnetic resonance (MR) images. The method is based on a combination of unsupervised learning algorithm of the self-organizing maps (SOM) and supervised learning vector quantization (LVQ) methods. Stationary wavelet transform (SWT) is applied to the images to obtain multiresolution information for distinguishing different tissues. Statistical information of the different tissues is extracted by applying spatial filtering to the coefficients of SWT. A multidimensional feature vector is formed by combining SWT coefficients and their statistical features. This feature vector is used as input to the SOM. SOM is used to segment images in a competitive unsupervised approach and an LVQ system is used for fine-tuning. Results are evaluated using Tanimoto similarity index and are compared with manually segmented images. Quantitative comparisons of our system with the other methods on real brain MR images using Tanimoto similarity index demonstrate that our system shows better segmentation performance for the gray matter while it gives average results for white matter. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Diagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 24 شماره
صفحات -
تاریخ انتشار 2011